Procesamiento Digital de Señales Práctica 1: Señales Básicas

Duración: 2 semana.

Objetivo: Que el alumno conozca las instrucciones de Matlab que manipulan las señales básicas en el procesamiento digital de señales.

Desarrollo:

 a) Genere y grafique una señal senoidal de 31 puntos, escribiendo el siguiente código en Matlab:

> nn=0:30; seno=sin(nn/2+1); stem(nn,seno);

Nota: Para ver el seno en forma continua usar plot en lugar de stem.

- b) Genere una señal impulso imp[n] de 31 elementos, recuerde que en un vector en Matlab el primer elemento de éste se accesa con el índice 1, es decir imp[1]=1 mientras que imp[n]=0 para n<1
- c) Genere y grafique las siguientes secuencias:

$$x1[n] = 0.9\delta[n-5]$$
 $1 \le n \le 20$
 $x2[n] = 0.8\delta[n]$ $-15 \le n \le 15$
 $x3[n] = 1.5\delta[n-333]$ $300 \le n \le 350$
 $x4[n] = 4.5\delta[n+7]$ $-10 \le n \le 0$

2. En general se requieren tres parámetros para describir una función senoidal: la amplitud A, la frecuencia ω_0 y la fase de ϕ .

$$x[n] = A\sin(\omega_0 n + \phi)$$

a) Genere y grafique las siguientes secuencias

$$x1[n] = \sin(\pi/17n)$$
 $0 \le n \le 25$
 $x2[n] = \sin(\pi/17n)$ $-15 \le n \le 25$
 $x3[n] = \sin(3\pi n + \pi/2)$ $-10 \le n \le 10$
 $x4[n] = \cos(\pi/\sqrt{23}n)$ $0 \le n \le 50$

b) Escriba una función en Matlab que genere una senoidal de tamaño finito. La función tendrá 5 argumentos de entrada: tres para los parámetros de la senoide y los dos finales para indicar el primero y el último índice de la señal.

3. Si una señal discreta es producida por un muestreo regular de s(t) a un intervalo de $f_s = 1/T$, entonces obtenemos que:

$$s[n] = s(t)|_{t=nT} = A\cos(2\pi f_0 T n + \phi) = A\cos(2\pi (f_0 / f_s) n + \phi)$$

a) Escriba una función en Matlab para la fórmula dad que sea discreta en tiempo y de duración finita. La función deberá requerir de seis argumentos de entrada: tres para los parámetros de la señal, dos para los tiempos de inicio y fin y uno para el muestreo. Puede comprobar su correcto funcionamiento al generar una senoide con las siguientes definciones:

Frecuencia de la señal = 2500 Hz
 Fase inicial = 30 grados
 Amplitud = 100
 Frecuencia de muestreo = 12 KHz
 Tiempo de inicio = 0 seg
 Tiempo final = 10 mseg

- **b)** Usando la función diseñada en el inciso anterior, grafique dos señales, una como función del tiempo (en milisegundos), y otra como función de n, usada en t_n =nt.
- 4. Usando el generador de funciones generar señales senoidales con las siguientes frecuencias: 1,2,4,8,16 y 32 KHz, 16 bits por muestra, durante un segundo, el resultado debe ser guardado en archivos wav. Utilizando Matlab grafique estas señales y obtenga las transformada de Fourier de cada una de ellas, usando bloques de 512 muestras, grafique su magnitud y comente sus resultados.
- 5. Repita el inciso anterior en un espacio tiempo-frecuencia, para una señal cuya frecuencia varía linealmente de 200 Hz a 8 KHz (Sweep). Obtenga la Transformada de Fourier en bloques y por otro lado utilizando las 16000 muestras. Use una señal chirp con FM modulada con rampa. Comente sus resultados.

	Comando útiles en Matlab
wavread	Para leer un archivo .wav a un vector
wavwrite	Para escribir un vector a un archivo .wav
sound	Para reproducir un vector en la bocina del sistema
wavplay	Para reproducir un vector en el dispositivo de sonido de salida windows
wavrecord	Para grabar del dispositivo de sonido de entrada windows a un vector
Para grabar un archivo .wav del micrófono: usar grabadora de sonidos de windows	
Especificar formato(PCM, etc), frecuencia de muestreo(16 KHz,etc), bits por muestra (16,etc).	